
Extracting Structure from Matrices Extracting Structure from Matrices
& Tensors by Random Sampling& Tensors by Random Sampling

Michael W. MahoneyMichael W. Mahoney

Yale University
michael.mahoney@yale.edu

(joint work with Petros Drineas and Ravi Kannan)

@ ARCC Workshop on Tensor Decompositions

2

Motivation

Goal: To develop and analyze fast Monte-Carlo algorithms for performing
useful computations on large matrices (and tensors):

• Matrix Multiplication

• Computation of the SVD

• Computation of the CUR decomposition

• Testing feasibility of linear programs

Such matrix computations generally require time which is superlinear in
the number of nonzero elements of the matrix, e.g., n3 in practice.

These and related algorithms are useful in applications where the
datasets are modeled by matrices (or tensors) and are extremely large.

3

Motivation (cont’d)

In many applications large matrices appear (too large to store in RAM).

• We can make a few “passes” (sequential READS) through the matrices.

• We can create and store a small “sketch” of the matrices in RAM.

• Computing the “sketch” should be a very fast process.

Discard the original matrix and work with the “sketch”.

4

Our approach & our results

1. A “sketch” consisting of a few rows/columns of the matrix is adequate for
efficient approximations.

2. We draw the rows/columns randomly, using non-uniform sampling;
rows/columns are picked with probability proportional to their lengths.

Create an approximation to
the original matrix which can
be stored in much less space.

Generalize CUR to tensors.

5

Approximating A by CUR

Given a large m-by-n matrix A (stored on disk), compute an approximation
A’=CUR to A such that:

1. A’=CUR is stored in O(m+n) space, after making two passes through A,
and using O(m+n) additional space and time.

2. A’=CUR satisfies, with high probability,

6

Computing C and R

• C consists of c = O(k/e2) columns of A.

• R consists of r = O(k/e2) rows of A.

• C and R are created using non-uniform sampling: .

7

Computing U

The CUR algorithm essentially expresses every row of the matrix A as a
linear combination of a small subset of the rows of A.

• This small subset consists of the rows in R.

• Given a row of A – say A(i) – the algorithm computes the “best fit” for
the row A(i) using the rows in R as the basis.

i.e.

Notice that only c = O(1) elements of the i-th row are given as input.
However, a vector of coefficients u can still be computed. The whole
process runs in O(m) time.

8

Main Theorem

Assume Ak is the “best” rank k approximation to A (through SVD). Then

To achieve (1), we set r = O(k/e2) rows and c = O(k/e2) columns.

To achieve (2), r = O(1/e2) rows and c = O(1/e2) columns suffice.

9

Title:
C:\Petros\Image Processing\baboondet.eps
Creator:
MATLAB, The Mathworks , Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Original matrix After sampling columns

1. Compute the top k left singular vectors of the matrix C and store
them in the 512-by-k matrix Hk.

2. A and HkHk
TA are close.

A starting point for CUR
A C

10

A starting point for CUR (cont’d)
Title:
C:\Petros\Image Processing\baboondet.eps
Creator:
MATLAB, The Mathworks , Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

A

Question: How is HkHk
TA related to CUR?

Answer: If we replace A by a matrix which consists of a carefully
scaled copy of the rows “revealed” in R, then we get CUR!

HkHk
TA

11

A straightforward extension to tensors

(Preliminary results - work in progress)

12

A recursive extension of CUR to tensors

(Preliminary results - work in progress)

13

For more details:

http://www.cs.rpi.edu/~drinep

http://www.cs.yale.edu/homes/mmahoney

Thank you!

